Équations cartésiennes

1 Équation cartésienne d'une droite du Plan

Le plan est muni d'un repère orthonormé, on définit les points A(-2, -5), B(7, -2) et C(1, 6).

- 1. Déterminer une équation vérifiée par les coordonnées (x; y) des points M de la droite \mathcal{D} perpendiculaire à (AB) au point A. (on pourra utiliser l'orthogonalité de deux vecteurs)
- 2. Déterminer les coordonnées du point H intersection de la droite \mathcal{D} avec la perpendiculaire à \mathcal{D} passant par C. (on pourra utiliser la colinéarité de deux vecteurs)
- 3. Calculer la distance HC.

2 Équation cartésienne d'un plan de l'Espace

L'Espace est muni d'un repère orthonormé, on définit les points A(-2; -5; 3), B(7; -2; -3) et C(1; 6; -1).

- 1. Déterminer une équation vérifiée par les coordonnées (x; y; z) des points M du plan \mathcal{P} perpendiculaire à (AB) au point A. (on pourra utiliser l'orthogonalité de deux vecteurs)
- 2. Déterminer les coordonnées du point H intersection du plan \mathcal{P} avec la perpendiculaire à \mathcal{P} passant par C. (on pourra utiliser la colinéarité de deux vecteurs)
- 3. Calculer la distance HC.

3 Distance d'un point à une droite

Définition 1. Soient \mathcal{D} une droite et M un point du Plan, on appelle projeté orthogonal du point M sur la droite \mathcal{D} le point H intersection de la droite \mathcal{D} avec la droite perpendiculaire à \mathcal{D} passant par M. On appelle distance du point M à la droite \mathcal{D} le réel $d(M; \mathcal{D}) = HM$.

Définition 2. Soient \mathcal{P} un plan et M un point de l'Espace, on appelle projeté orthogonal du point M sur le plan \mathcal{P} le point H intersection du plan \mathcal{P} avec la droite perpendiculaire à \mathcal{P} passant par M. On appelle distance du point M au plan \mathcal{P} le réel $d(M; \mathcal{P}) = HM$.

1. Soient $M(x_M; y_M)$ un point du Plan et \mathcal{D} une droite du Plan d'équation cartésienne ax + by + c = 0, démontrer que :

$$d(M; \mathcal{D}) = \frac{|ax_M + by_M + c|}{\sqrt{a^2 + b^2}}$$

2. Soient $M(x_M; y_M; z_M)$ un point de l'Espace et \mathcal{P} un plan de l'Espace d'équation cartésienne ax + by + cz + d = 0, démontrer que :

$$d(M; \mathcal{P}) = \frac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}$$